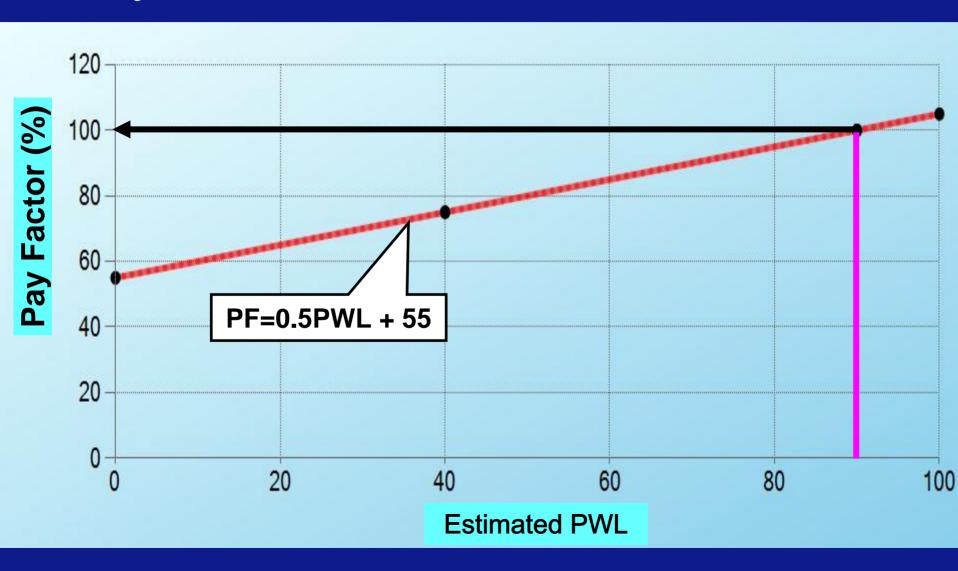
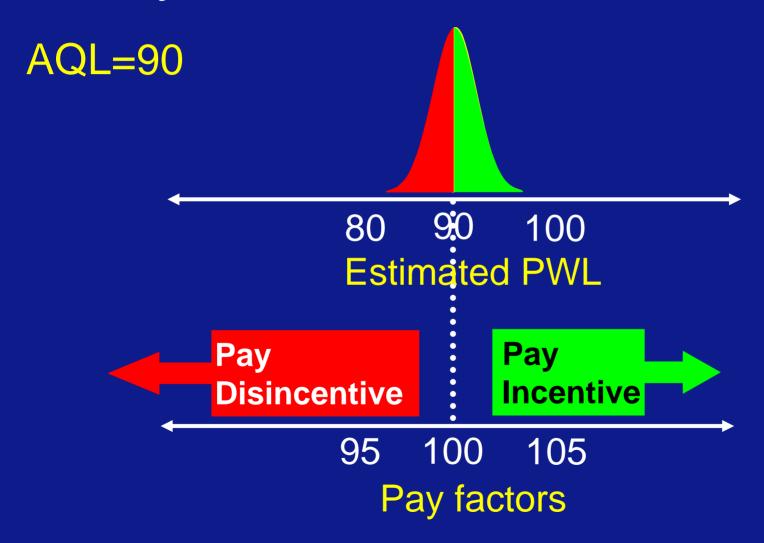
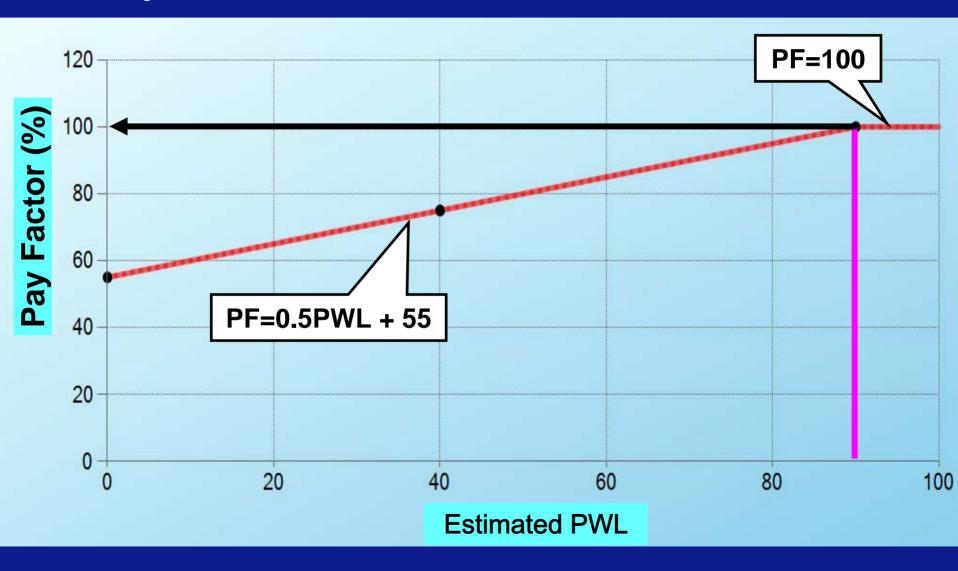
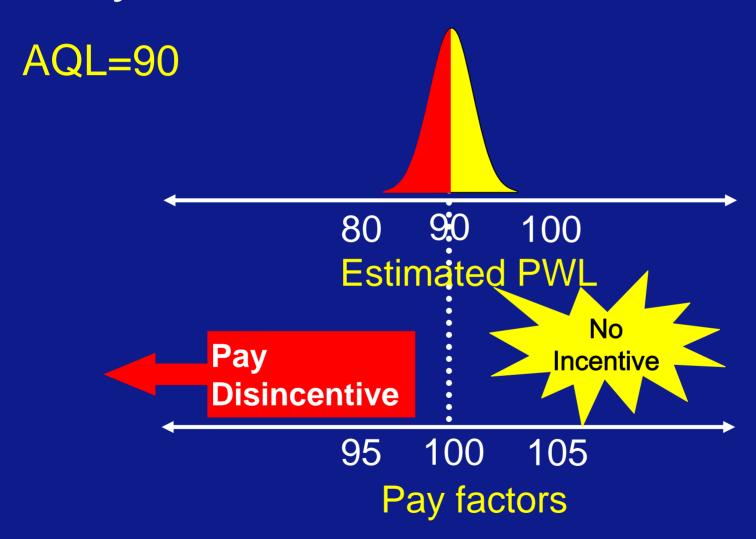
Quality Assurance "The Rest of the Story"

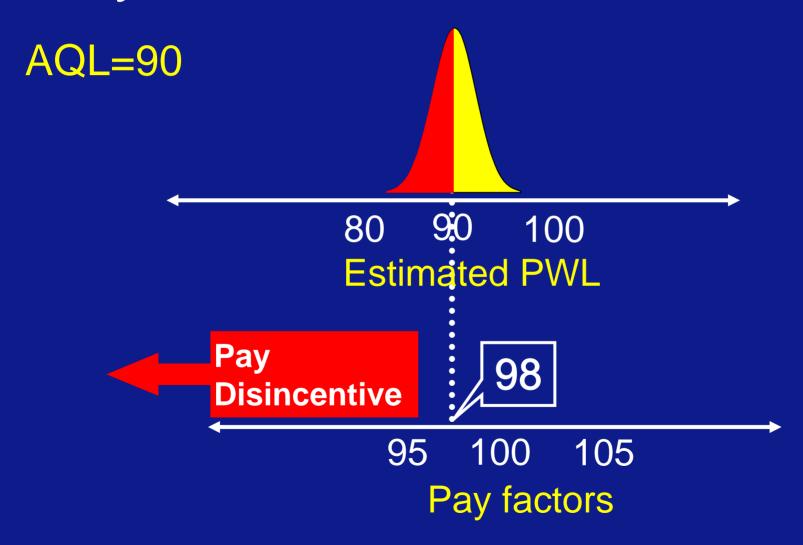

Dennis Dvorak FHWA Resource Center Olympia Fields, IL

North Central Asphalt User Producer Group Meeting January 10-11, 2007


AASHTO Road Test


Payment Plan with 5% Incentive


Payment Plan with Incentive


Payment Plan without Incentive

Payment Plan without Incentive

Payment Plan without Incentive

Overview

- Background
- Where we have been ...
- Where we are now ...
- Current Resources
- Where we are going ...
 - Short term
 - Long term

Background

Why is Quality Assurance Important?

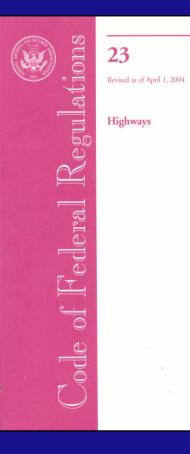
Approximately 50% of construction costs are spent on the <u>PURCHASE</u> of materials.

Background

- Acceptance procedures
 - Once material is in place ... it stays in place
 - Only industry paying for marginally acceptable material

Where We Have Been ...

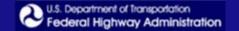
- Method type specs
- 1956-1960 AASHO Test Road
 - Recognition of Material variability
- 1960s Blatnik Investigations
 - Federal regulation on sampling and testing
- 1970's Experimentation with QA specifications
- 1980's Implementation of QA specifications
- 1990's Use of contractor test results for acceptance


Where We Are Now ...

- Quality Assurance Specifications
 - Percent Within Limits Specifications
- Design Build
- Short Term Warranty/Guarantee

Where We Are Now ...

POLICY (23CFR 637.205(a)) – "Each SHA shall develop a quality assurance program ...
 The program must meet the criteria in 637.207 and be approved by the FHWA."



Quality Assurance Program

- Acceptance Program
 - State's Verification Testing
 - Inspection
 - May use Contractor test results
 - Dispute resolution
- Qualified Technicians
- Accredited / Qualified Labs
- Independent Assurance Program
- Materials Certification

33 States using Contractor Test Results in the Acceptance Decision Hawaii Alaska

17 States Reviewed as part of QA Stewardship Reviews 2 Hawaii Alaska

Scope

- Interviews
 - DOT Headquarters, Region/District, and Project Field Offices
- Review
 - **■DOT** implementation strategies, policy and procedures, and office records
- Visit
 - Construction projects to assess field procedures and practices

Where We Are Now ...

- Not enough State personnel
- Not enough State Verification Testing
- Reluctance to spend money on construction engineering – not even for consultants
- Increasing volume of projects/workload
- No electronic materials testing data

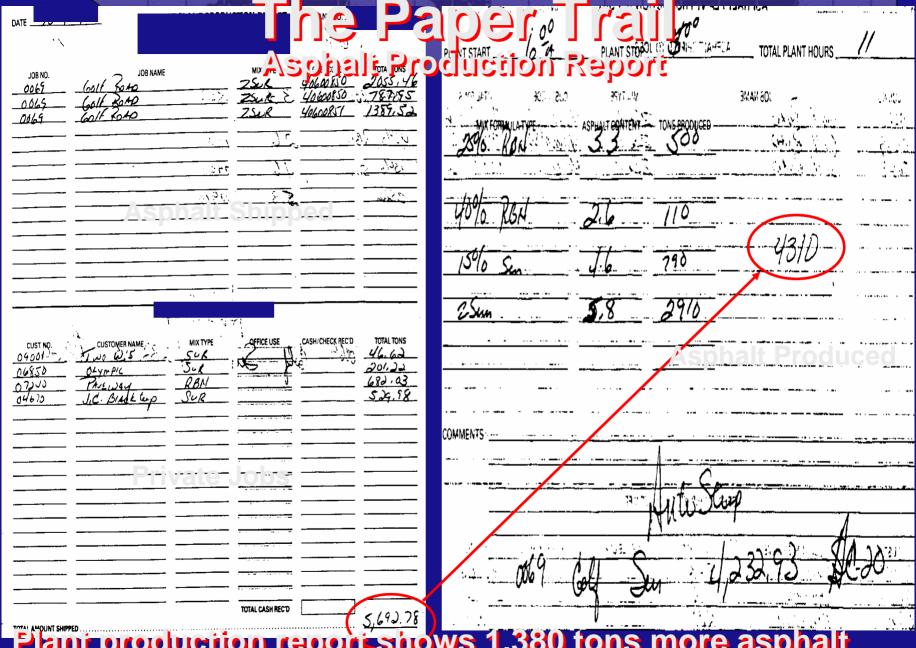
Where We Are Now ...

- Ineffective validation procedures
 - no independent samples
 - no statistical comparison
 - number of samples for comparison
 - control of Contractor supplied data
 - security of samples
 - Control of random sampling location
 - Retest provisions

Common Types of OIG Fraud Cases

- ■Bid rigging & collusion
- Materials overcharging
- Time overcharging
- Product substitution
- Minority-owned business fraud
- Quality-control testing fraud
- Kickbacks
- □Bribery

Common Types of OIG Fraud Cases


- ■Bid rigging & collusion
- Materials overcharging
- Time overcharging
- Product substitution
- Minority-owned business fraud
- Quality-control testing fraud
- Kickbacks
- □Bribery

Materials Overcharging

Definition

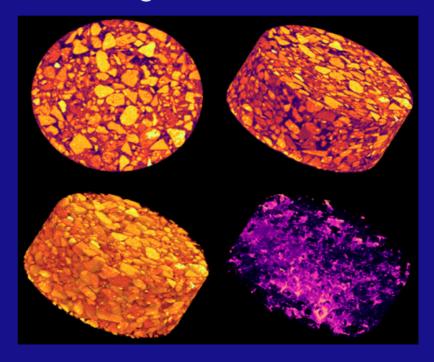
Contractor *misrepresents* how much construction material was used on the job and then charges for more material than was to a coincrease job profit.

Plaint production report shows 1,380 tons more a

Quality-Control Testing Fraud

Definition

Contractor *misrepresents* QC test results to falsely earn contract incentives or avoid contract disincentives, or to avoid production shutdown or required removal of deficient material in order to *limit costs* or *increase profits*.


Example

After distracting the state inspector, an asphalt-paving crew foreman discarded road cores from random QC locations designated by the inspector and replaced them with "test cores" known to qualify for density-incentive payments under the contract.

Quality-Control Testing Fraud

Sample Indicators

- Contractor employees regularly contrive to take or label
 QC samples away from inspector oversight
- Contractor insists on transporting QC samples from the construction site to the lab
- Contractor does not maintain
 QC samples for later Quality Assurance (QA) testing

Contractor challenges results, or attempts to intimidate
 Quality Assurance inspectors obtaining conflicting results

Resources

- NHI Course 134042: Materials Control and Acceptance - Quality Assurance
- FHWA Basic PWL Workshop
- 2003-2005 Summary Report for QA Stewardship Review
- <u>www.fhwa.dot.gov/pavement/materials/stewardreview2006.cfm</u>

Where We Are Going ... Short Term

- Reduce Risks
 - Lots not restricted to a single day
 - More State Verification Testing as compared to Contractor Testing
 - Statistically Proper Validation Procedures
- SPECRISK and PWL-Pay Programs
- Specification Development Course
- Database Workshop

Why Electronic Databases

- Need information to develop and modify specifications
- Materials inputs into M-E Pavement Design Guide
- Tie to Pavement Management System

Examples of Paper Documents

Project Numi	AC-NH-7-002	(064)077	Contra	ctor Mayo	Const.		Date	7-18-06	Time 1:30 ar	
Test Number	r 10	Lot Number 10	-		Daily Tons		Total			
Station 42	45+80		Lane	Rt.Should	ler		Lift			
			F	ELD PLU	GS					
PLUG NO.	WEIGHT IN AIR (A)	WEIGHT IN WATER (B)	4		GHT SURF	VOLUMI C-B = D (D)			JLK SP. GR. A = E	
10-A	4904.8	2848.2		4906.7		2058.5		2.383		
10-B	4924.7	2858.2		4927.6		2069.4				
			-							
				AVER	AGE BUL	K SP. GR. (F) =	2.382		
						x 62.4) PCF		148.6		
		N.	MIXAN	UM MIX E	ENSITY					
F	LASK NUMB	ER	1		2					
G. S	SAMPLE CON	ITAINER & SOLUT		4234.9	3	983.7				
Н. С	CONTAINER &	& SOLUTION:	3633.4		3382.2					
I. S	AMPLE IN S	DLUTION	601.5		601.5					
J. S	SAMPLE IN A	IR	1012.4		1010.1					
K. \	VOLUME OF	VOIDLESS MIX	410.9		108.6					
L. N	MEAS. MAX.	SPEC GRAVITY	2.464		2.472	2.468				
M. MAX. THEOR. DENSITY (62.4 X L)										
	PERCENT All IR VOIDS = L	R VOIDS -F X 100 = (2.468 L	2.46		_) 100 =	3.5 %	AIR V	DIDS		
AGG	REGATE BL	END PROPORTIO	NS	A	C CONT	ENT:5.7				
28	5/8 Rock		_	NOTES	Changed:	from 6.0% to 5.	7%.			
15	CD		_							
24	ASCF		_							
33	NF									

Delbet Janko

Examples of Electronic Files

4	PROJECT NUMBER: NH-6-4(120)								CONTRACTOR:																	
5	NAME OF ROAD: EAST OF HEARTVELL							MIX TYPE:								SP-4(0.5)										
6	CONTROL NUMBER: 70882								BINDER SOURCE & GRADE:								TRIGEANT 64-28									
7	COUNTY: ADAMS, KEARNEY							COMPACTION TEMPERATURE:								285										
8								SHEET NUMBER:								1										
9																										
10	YEAR - 2004 Asphalt Pavement Analyzer Data								Cycles		Temp.			Tensile Strength Ratio, % 86												
11	SAMPLEID DATE/LOCATION				MIX VOLUN					METRICS AND PROPERTIES									GRADATION (Percent Passing)							
12	Sample	Lab# Field#	Received	Sampled	Station	Stability (lbs)	Flow	Rice (Gmm)	Density @Ndes	Density @Nmax	%Voids @Nini	%Voids @Ndes	XVoids @Nmax	% Binder	x VMA	XVFA	XFAA	3/4"	2,11	3/8	No. 4	No.8	No.16	No. 30	No. 50	No. 200
13	EBM	63 SAME AS 28(84)	3/5/04	3/5/04				2.428	2.314	2.338	11.8	4.7	3.7	5.11	14.9	68.4	45.7	99.1	95.1	87.7	71.2	44.0	35.4	17.7	10.8	4.5
14	Contractor							2,422	2.336	2.360	10.6	3.6	2.6	5.19	14.2	74.8	45.1	100.0	94.6	89.9	73.6	46.0	30.7	19.1	11.8	5.2
15	-1	122	6/8/04	6/3/04				2.428	2.319	2.341	12.2	4.5	3.6	5.00	14.7	69.3	44.8	100.0	93.0	88.6	79.1	50.2	30.3	19.1	11.8	5.1
16	Contractor	TS-1		6/3/04	BURN	OFF	FAA	2,428	2.318	2.342	11.5	4.5	3.5	4.91	14.6	69.0	44.9	100.0	92.5	87.1	73.9	44.2	28.8	18.6	11.7	5.2
17	2	125	6/10/04	6/7/04				2.441	2.339	2.363	11.8	4.2	3.2	4.95	13.9	69.9		100.0	96.7	91.7	79.3	51.0	45.9	32.2	21.2	5.5
18	Contractor	TS-2		6/7/04				2,439	2.348	2.372	11.2	3.7	2.7	4.89	13.5	72.1		100.0	94.4	89.0	79.1	50.0	32.5	21.4	14.0	5.9
19	-37 -	126	6/10/04	6/9/04				2.430	2.364	2.383	10.5	2.7	2.0	4.95	13.0	79.0	- :	100.0	94.3	90.1	76.8	49.9	43.6	31.1	20.3	5.7
20	Contractor	TS-3		6/9/04				2.437	2.363	2.388	10.3	3.0	2.0	5.01	13.0	76.7		100.0	94.8	90.4	79.2	50.7	32.3	21.2	13.9	6.2
21	4 .	127	6/10/04	6/9/04				2.436	2.331	2.353	12.0	4.3	3.4	4.90	14.2	69.3		100.0	95.2	92.3	81.2	52.0	32.2	20.8	13.2	5.6
22	Contractor	TS-4		6/9/04				2.437	2.330	2.354	11.6	4.4	3.4	4.94	14.2	68.9		100.0	97.0	86.0	82.9	52.9	33.5	21.7	14.0	6.1
23	5.	128	6/10/04	6/9/04				2.419	2.305	2.329	12.2	4.7	3.7	4.73	14.9	68.5	44.8	100.0	96.3	93.4	81.8	54.2	33.6	21.7	13.7	5.4
24	Contractor	1-1		6/9/04	BURN	OFF	FAA	2.434	2.320	2.346	11.7	4.7	3.6	4.82	14.4	67.5	44.8	100.0	95.0	92.7	85.2	54.4	34.7	22.5	14.5	6.2
25	- 6	137	6/14/04	6/9/04				2.430	2.347	2.369	11.0	3.4	2.5	4.76	13.4	74.4		100.0	94.5	89.5	78.6	50.5	32.1	21.0	13.5	5.7
26	Contractor	1-2		6/9/04				2.440	2.349	2.374	10.8	3.7	2.7	4.65	13.2	71.8		100.0	92.7	86.5	78.0	50.4	32.6	21.4	14.0	4.9
27	.7,	138	6/14/04	6/10/04				2.434	2.346	2.370	11.3	3.6	2.6	4.85	13.6	73.2		100.0	93.3	89.4	77.3	50.0	30.7	19.8	12.5	5.1
28	Contractor	1-3		6/10/04				2,438	2.342	2.368	11.1	4.0	2.9	4.85	13.6	71.0		100.0	93.7	89.8	79.2	50.1	31.7	20.6	13.3	5.9
29	8	139	6/14/04	6/10/04				2.428	2.343	2.367	11.2	3.5	2.5	4.89	13.7	74.5		100.0	93.3	89.0	74.7	47.3	29.3	19.0	12.2	5.1
30	Contractor	1-4	PROD	PUCKS	TSR-78			2,439	2,350	2.377	10.9	3.6	2.5	4.89	13.4	72.8		100.0	94.7	90.3	77.4	48.7	31.0	20.2	13.2	5.7
31	,97	140	6/14/04	6/10/04				2.427	2.338	2.364	11.5	3.7	2.6	5.13	14.1	73.9	- :	100.0	96.9	90.7	78.5	49.9	30.9	20.0	12.7	5.2
32	Contractor	1-5		6/10/04				2,426	2.340	2,366	11.0	3.6	2.5	5.26	14.1	74.7		100.0	96.7	94.3	83.1	53.1	33.4	21.4	13.9	6.0
33	10 -	147	6/15/04	6/10/04				2.422	2.354	2.373	10.6	2.8	2.0	5.10	13.5	79.4	46.0	99.2	94.0	89.4	76.8	49.8	31.1	20.3	12.9	5.2
34	Contractor	2-1		6/10/04				2,428	2.348	2.373	10.7	3.3	2.3	5.06	13.6	75.9	46.0	100.0	95.0	89.7	78.8	50.1	32.2	21.2	13.8	6.2
35	-11	170	6/18/04	6/16/04				2.415	2.346	2.368	10.8	2.9	1.9	5.47	14.1	79.7		100.0	97.2	91.3	82.2	53.5	33.1	21.1	13.4	5.5
H	4 → H	Summ	ary of	Tests	EBM / L	ab Tes	t 1 /	Lab Tes	t 2 / La	b Test 3	Lab	Test 4	1 / Lak	Test	5 / La	< 70.1		400.0	00.0	1 00 0	00.0	E0.4	22.0	21.2	10.0	FO

Evolution...

QA Specs

Performance Specs

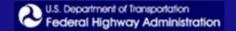
Design Build Warrant Maintain

Advanced Quality Systems (AQS) Implementation Team

- Headquarters Offices
- Resource Center
- Division Offices

Where We Are Going ... Long Term

- Domestic Scan of other industries
- Move toward Quality Management Systems by all contractors and suppliers
 - Beyond ISO 9000 sector specific requirement
 - Aerospace AS9100
 - Automotive ISO/TS16949
- Quality Based Selection and Procurement
- Design Build Warrant Maintain


Design Build Warrant Maintain

- The Final QA?
 - Long Term Warranty
 - Performance based contract
 - Guarantees product integrity
 - Contractor responsible for repair of defects or replacement
 - Warranty Period
 - Pre specified for repair defects

... and beyond!

- Cannot continue on same path of regulate and enforce
- Cannot continue to police contractors trying to catch them in the act
 - System needed to match contractor's priorities in-line with agency's
 - Quality and long term performance

